[1] |
Biswal A K, Pattanayak G K, Pandey S S, Leelavathi S, Reddy V S, Govindjee, Tripathy B C. 2012. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol, 159(1): 433-449.
DOI
PMID
|
[2] |
Dong F G, Xiong Z M, Qian Q, Zhu X D, Cheng S H. 1994. Breeding near-isogenic lines of morphological markers in indica rice. Chin J Rice Sci, 8(3): 135-139. (in Chinese with English abstract)
|
[3] |
Feng B H, Li G Y, Islam M, Fu W M, Zhou Y Q, Chen T T, Tao L X, Fu G F. 2020. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1, 5-bisphosphate carboxylase/oxygenase activity. Plant Sci, 290: 110245.
DOI
URL
|
[4] |
Fromme P, Melkozernov A, Jordan P, Krauss N. 2003. Structure and function of photosystem I: Interaction with its soluble electron carriers and external antenna systems. FEBS Lett, 555(1): 40-44.
PMID
|
[5] |
Fu W, Wang T D. 1994. The electrical analogy analysis and simulation testing of the relationship between net photosynthesis rate and stomatal conductance. Acta Bot Sin, 36: 511-517.
|
[6] |
Gibson K, Park J S, Nagai Y, Hwang S K, Cho Y C, Roh K H, Lee S M, Kim D H, Choi S B, Ito H, Edwards G E, Okita T W. 2011. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Sci, 181(3): 275-281.
DOI
PMID
|
[7] |
Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H, Yang J C. 2017. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci, 8: 1082.
DOI
PMID
|
[8] |
Jahan M S, Nozulaidi M, Khairi M, Mat N. 2016. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. J Plant Physiol, 195: 1-8.
DOI
URL
|
[9] |
Jung Y J, Lee H J, Yu J, Bae S S, Cho Y G, Kang K K. 2021. Transcriptomic and physiological analysis of OsCAO1 knockout lines using the CRISPR/Cas9 system in rice. Plant Cell Rep, 40(6): 1013-1024.
DOI
URL
|
[10] |
Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. 2005. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 57(6): 805-818.
PMID
|
[11] |
Makino A. 2011. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 155(1): 125-129.
DOI
PMID
|
[12] |
Perdomo J A, Capó-Bauçà S, Carmo-Silva E, Galmés J. 2017. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front Plant Sci, 8: 490.
DOI
PMID
|
[13] |
Si F F, Fan F F, Wei X, He S H, Li X L, Peng X J, Li S Q. 2022. Quantitative trait locus mapping of high photosynthetic efficiency and biomass in Oryza longistaminata. Rice Sci, 29(6): 569-576.
DOI
URL
|
[14] |
Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J Z, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T. 2013. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep, 3: 2149.
DOI
URL
|
[15] |
Tanaka M, Keira M, Yoon D K, Mae T, Ishida H, Makino A, Ishiyama K. 2022. Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing rubisco under sufficient N fertilization. Rice, 15(1): 10.
DOI
PMID
|
[16] |
Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K, Tanaka A. 2001. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J, 26(4): 365-373.
PMID
|
[17] |
Tanaka R, Tanaka A. 2005. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res, 85(3): 327-340.
DOI
URL
|
[18] |
Wang D Y, Zhang X F, Shao G S, Qian Q, Xu C M. 2008. Leaf senescence of different leaf color rice and its response to light intensity. Chin J Rice Sci, 22(1): 77-81. (in Chinese with English abstract)
|
[19] |
Wu X M, Li S F, Hu P, He R, Jiao R, Mao Y J, Lu C L, Hu J, Lin H, Wu R L, Zhu X D, Rao Y C, Wang Y X. 2021. Cloning and functional analysis of rice tillering regulatory gene HTD3. Chin J Rice Sci, 35(6): 535-542. (in Chinese with English abstract)
|
[20] |
Yu N, Liu Q N, Zhang Y X, Zeng B, Chen Y Y, Cao Y R, Zhang Y, Rani M H, Cheng S H, Cao L Y. 2019. CS3, a Ycf54 domain- containing protein, affects chlorophyll biosynthesis in rice (Oryza sativa L.). Plant Sci, 283: 11-22.
|
[21] |
Zeng D L, Qian Q, Dong G J, Zhu X D, Dong F G, Teng S, Guo L B, Cao L Y, Cheng S H, Xiong Z M. 2003. Development of isogenic lines of morphological markers in indica rice. Acta Bot Sin, 45(9): 1116-1120.
|
[22] |
Zhang P, Liu M L, Ye H S, Zhai R R, Zhu G F, Ye J, Zhang X M. 2021. Research progress of rice leaf color mutants. Mol Plant Breeding, 19(17): 5712-5719. (in Chinese with English abstract)
|
[23] |
Zhou K N, Ren Y L, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y H, Zhao S L, Ma W W, Zhang H, Wang L W, Wang C M, Wu F Q, Zhang X, Guo X P, Cheng Z J, Wang J L, Lei C L, Jiang L, Li Z F, Wan J M. 2017. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. Planta, 245(1): 45-60.
DOI
URL
|